If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144t-16t^2+192=0
a = -16; b = 144; c = +192;
Δ = b2-4ac
Δ = 1442-4·(-16)·192
Δ = 33024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33024}=\sqrt{256*129}=\sqrt{256}*\sqrt{129}=16\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-16\sqrt{129}}{2*-16}=\frac{-144-16\sqrt{129}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+16\sqrt{129}}{2*-16}=\frac{-144+16\sqrt{129}}{-32} $
| 2(w+5)+2w=59 | | 29W+5)+2w=59 | | 40=0.80x | | 70=2(2w+11)+2w | | -6+6n=30 | | 5-7n=30 | | X+46=36=5y | | 5-(4x+6)=3x+(7-4x9 | | 65+x+8x+5=200+x | | 5-(4x+6)=3x | | 25+.5m=45+.3m | | n^2+105n-1026=0 | | 81^x+4=729^3x-3 | | -12=77(2a-3)-(8a-9) | | (u-6)^2-12=0 | | 10/7m+3=1 | | 4x+5x-3x-5=1 | | -12x-4+42=17x+8 | | -3x-(2-6x)=25 | | (2/x)+2=(3/5x)+(21/10) | | 7x+3x-2x-5=51 | | y=3Y+14 | | 3y–9=9-15y. | | x2+(x/2)^2-36=0 | | 1.25x2-72=0 | | 1.5x^2-72=0 | | (u+7)^2=2u^2+13u+19 | | (4+5i)/(3-7i)= | | (r+5)(r-5)=0 | | 8x-30=60+6x | | 5x+9=2x+42 | | 3x-130+10=240 |